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1. Introduction

With chip size reaching 1 million transistors, the need for high-
level design of circuits becomes compelling. The main stum-
bling block in the development of design methods for VLSI al-
gorithms is to find an interface that provides a good separation
of the physical and algorithmic concerns. Among the physical
issues, timing is the most critical, since it is not only essential
to the real-time behavior of a circuit, but also to its logical
correctness if synchronous techniques are used.

Synchronous techniques are detrimental to the use of high-
level design methods because they don’t “scale well”: a circuit
may cease to function correctly when its feature sizes are scaled
down to smaller dimensions. Further, with the increasing size of
circuits, it becomes more and more difficult to distribute safely
a clock signal across a chip, and the restrictions attached to
wire lengths in order to maintain certain timing properties add
extra complication to the already difficult layout problem.

For all those reasons, self-timed techniques {as defined in
[10]) are particularly attractive for high-level VLSI design [9].
We propose a synthesis method for self-timed circuits in which
the computation is initially described as a set of communicat-
ing processes in the notation of [3], which is similar to C.A.R.
Hoare’s CSP (2] but augmented with the probe construct. This
first description is the reference solution, which has to be proved
correct. The program is then compiled into a self-timed circuit
by applying a series of semantics-preserving transformations.
Hence the circuit obtained is correct by construction.

Unlike most silicon compilation methods and hardware de-
scription languages, the method leads to efficient circuits. It
has been applied with “hand compilation” to a series of diffi~
cult self-timed design problems, such as distributed mutual ex-
clusion, fair arbitration, routing automata, with great success.
Actually, the method, applied by a person in a mechanical way,
will typically produce better results than the most experienced
designers can produce. The main reason for the efficiency of
the method is that, rather than going in one step from the pro-
gram notation to the circuit, the designer applies a series of
transformations to the original program. At each level of the
transformation, powerful algebraic manipulations can be per-
formed leading to important optimizations in terms of speed or
area.

We shall first present the program notation and the VLSI
operators that constitute the “object code”. We then describe
the four steps of the compilation and illustrate the method with
one sizeable example, the construction of a stack. We shall con-
clude that this technique can be used for high quality and high
complexity designs, fully automated from a provably correct
high-level description. (For a more complete description of the
method, see [4], [5], [6], and [7].)

2. The program notation
The language used for the high-level description is close to
C.A.R. Hoare’s CSP[2]. We give only a very informal defini-
tion of the constructs used in this paper.

i) bt stands for b := true, b| stands for b := false.

ii) The execution of the selection command (generalized IF-
statement) [Gy — Sy | ... | Gy — Sy], where G) through
G, are Boolean expressions, and S; through S, are pro-
gram parts, (G; is called a “guard”, and G; — S; a
“guarded command”) amounts to the execution of an arbi-
trary S; for which G; holds. If ~(G1V...VGy) holds, the
execution of the command is suspended until (G1V...VGp)
holds.

iii) For atomic actions z and y, “z,y” stands for the execution
of z and y in any order.

iv) [G] where G is a Boolean, stands for [G — skip], and thus
for “wait until G holds”. (Hence, “[G]; S”and [G — S]
are equivalent.)

v) *[S] stands for “repeat S forever”.

vi) From ii) and iii), the operational description of the state-
ment #[[G1 — S1 | ... | Gn — Sal] is “repeat forever: wait
until some G; holds; execute an S; for which G; holds”.

Communicating processes
A concurrent computation is described as a set of processes
communicating with each other by communication actions on
channels {no shared variables). When no messages are transmit-
ted, communication on a channel is reduced to synchronization
signals. The name of the channel is then sufficient for identify-
ing a communication action.

If two processes pl and p2 share a channel named X in
pl and Y in p2, at any time the completion of the nth X-
action “coincides” with the completion of the nth Y- action.
If, for example, pl reaches the nth X- action before p2 reaches
the nth Y- action, the completion of X is suspended until p2
reaches Y. The X- action is then said to be pending.

Probe
Instead of the usual selection mechanism by which a set of pend-
ing communication actions can be selected for execution, we
provide a general Boolean command on channels, called the
probe. In process pl, the probe command X has the same
value as the predicate “A communication action Y is pending
in p2”.

Hence the guarded command X — X guarantees that
the X-action is not suspended. And a construct of the form
[X — X | Y > Y] can be used for selection.

3. The “object code”

In standard digital VLSI design, the MOS transistor is ideal-
ized as an on/off switch. Unfortunately, the switch model is
too crude, ignoring too many electrical phenomena that play



an important role in the functioning of the circuit. Therefore,
trying to carry the discrete model of a computation down to the
transistor level is very likely to lead either to incorrect imple-
mentations or to a too complicated model of the computation.
A crucial decision in the developement of our method has been
to choose an “object code” at a higher level than the transis-
tor. We have chosen to construct a notation that provides the
weakest possible form of control structure and smallest number
of program constructs. In fact, the notation contains exactly
one construct, the production rule, and is therefore called the
“production-rule set notation”.

This minimal notation has been chosen so that i) it has
sound semantics, ii) any non-terminating program can be com-
piled into production rules, iii) the transformation into a circuit
is straightforward.

In fact, we consider the production-rule set as the canonical
representation of a circuit. This representation can be decom-
posed into several equivalent networks of gates depending on
the set of building blocks used, but the production-rule set rep-
resents the circuit independently of the gate implementations.

4. Production rules
Production rules can be seen as a weaker form of guarded com-
mands. Consider the production rule G — S

o S is either a simple assignment, or an unordered list “s1,
82, 83, ...” of simple assignments, where a simple assignment
is the assignment of true or false to a single Boolean variable.

e G is a Boolean expression, called the guard of the pro-
duction rule. If G holds, the correct execution of S is guaran-
teed only if G remains invariantly true until the completion of
S. We say that G must be stable.

A production rule set is an unordered set (a collection) of
production rules. Consider the canonical production rule set
PRS:

Gl — S1

G2 — S2
Gn — Sn

e Unlike the guarded commands of a selection or a rep-
etition, the mutual exclusion among the different production
rules of a set is not part of the semantics of the construct. The
correct execution of a production rule set is guaranteed only if
interfering production rules are mutually exclusive. Two pro-
duction rules are said to be interfering when their right-hand
sides share a variable. Each process will be implemented as a
p.r.s. such that exactly one p.r. is firable at any time, hence
enforcing non-interference.

o If stability of the guards and mutual exclusion among in-
terfering production rules are guaranteed, the production rule
set PRS is semantically equivalent to the non-terminating rep-
etition *[[GCS]], where GCS is the guarded command set syn-
tactically identical to PRS. Stability of the guards is essential
to guarantee the absence of races and hazards. When stabil-
ity cannot be enforced, a special operator called “synchronizer”
has to be used. When mutual exclusion cannot be enforced,
a special operator called “arbiter” has to be used. These two
operators are not needed in this paper.

We implement a p.r.s. by decomposing it into a collection
of production rule sets each of which has a known VLSI imple-
mentation. Those primitive production rule sets correspond to
logic gates or standard VLSI cells that are our ultimate building
blocks._.

The set of operators with which we want to build our cir-
cuits is not unique. The descriptions of the operators used in
this paper in terms of their production rules and their logic
symbols are as follows.

The “and”:
(z,y) Az= zAy— 2T
SZV oy z).
The “or”:
(z,y) V2= zVvyrr 21
ST A-y— z|.
The wire:
zwy=s z—yl
-z yl.
The fork:

zf(y,2)= z—yl,21
-~z yl,z].

The C-element:

(z.9)Cz= zAy— 21
Sz Aoy 2],

The asymmetric C-element:

(zy)aC z=zAy— 27
-z 2]

The “flip-flop”:

(zy) f 2= z— 21
y—2z}.

A negated input or output is represented on the figures by a
small circle on the corresponding port. A wire with its input
negated is an inverter. A cell with a negated input is considered
as one cell, and not as the composition of an inverter and a cell.

5. The compilation method

Process decomposition

The first step of the compilation, called “process decomposi-
tion”, consists in replacing a process by several semantically
equivalent processes. The purpose of the decomposition is to
obtain a process representation of the program in which the
right-hand side of each guarded command is a straight-line pro-
gram, i.e., consists only of simple assignments and communica-
tion commands, composed by semi-colons and commas. Process
decomposition is applied repeatedly until the right-hand side of
each guarded command is a straight-line program. Process de-
composition plays an important role in the compilation of large
programs. We won’t need it in the example treated here. See
[5] for a typical use of this transformation.

Handshaking expansion

The implementation of communication, called “handshaking ex-
pansion”, replaces each channel by a pair of wire-operators and
each communication action by its implementation in terms of a
“four-phase handshaking” protocol. Channel (X,Y) is imple-
mented by the two wires (zo w yi) and (yo w zi).

Initially, zo, zi, yo, and yi are false. For a matching pair
(X,Y) of actions, the implementation is not symmetrical in X
and Y. One action is called active and the other one passive.
The four-phase implementation with X active and Y passive
is:

X = zo1; [zd]; zol; [-ai] (1)



Y =yl yot; [~yi]; yoi (2)

When no action of a matching pair is probed, the choice of
which one should be active and which one passive is arbitrary,
but a choice has to be made. The choice can be important
for the composition of identical circuits. A simple rule is that
for a given channel (X,Y), all actions at one side are active
and all actions at the other side are passive. If X is used, all
X- actions are passive—with the obvious restriction that ¥
cannot be used in the same program. The implementation of
the probe is simply: _
N X=ai
Y= yi

®3)
A probed communication action X — ... X is implemented:

zi—...zol; [~zi]; zo].

Reshuffling

Consider the handshaking expansion of program p according
to (1), (2), and (3). Provided that the cyclic order of the four
handshaking actions of a communication command is respected,
the last two actions of this command can be inserted at any
place in p without invalidating the semantics of the commu-
nication involved. However, modifying the order of these two
actions relatively to other actions of P may introduce deadlock.
The possibility to reshuffle the second half of the handshaking
sequence, plays an important role in the compilation method
as a source of algebraic manipulations.

Production rule expansion

The next step is to compile the handshaking expansion of the
program into a set of production rules from which all explicit
sequencing has been removed. This is the most difficult step in
particular because it requires, in all but trivial cases, the intro-
duction of state variables to identify each state of the compu-
tation uniquely.

Operator reduction

The last step, called “operator reduction”, consists in identi-
fying sets of production rules in the program with sets of pro-
duction rules describing operators. The non-trivial part in this
step is called “symmetrization”. It is used for transforming the
guards of the production rules so as to make them ‘look like’ the
guards of operators. After this last step, the program has been
replaced by a network of operators for which standard cells ex-
ist. (We have constructed a cell library of self-timed elements
in SCMOS technology. Since many cells are parametrized, the
library is extendable.)

6. Example: single variable register
Consider the following process that provides read and write
access to a simple boolean variable z:

([P P2z |Q— Q!z]) (4)
where =PV —Q holds at any time, i.e., read and write requests

exclude each other in time.

Handshaking expansion
The handshaking expansion of (4) uses the “double-rail” tech-
nique: the Boolean value of z is encoded on two wires, one

pi2 >— qo2

pi1 >— qot
Figure 1: Single-bit register

for the value true and one for the value false . Each guarded
command of (1) is expanded to two guarded commands:

*lpiv — 27T; [z]; pot; [-pis); pol
Pz > 2 |; [=al; pot; [-pia; pol
|z A gi — goy 1; [~gil; goy | (5)
|~z Agi — goz 1; [~gi]; goz |

Production rule expansion
The production-rule expansion of the first two guarded com-
mands gives:
pir—zt
piAz— pot
—piy— pol
piz—z|
P2 A-z s pot
=piz—po .
The first and fourth p.r.’s correspond “to the flip-flop:
(pi2; piz) K z. The other p.r.’s can be transformed into:

(1A 2)V (piz A-z) > pot
(—pis V-z)V (~pizVz) - po |

which is the definition of the IF-cell (pf1; pia; z) IF po. This set
of p.r.’s can also be implemented as:

(pi1, z) A po
(pi2,—~z) A po,
(po1,p02) ¥ po.

The production-rule expansion of the last two guarded com-
mands of (5) gives:

TAgi— got
TV g gop |
"ZAgi— gop !
ZV gim goy |,

which corresponds to the two operators (z, q:) A goy and
(-2, ¢5) A gos. The circuit is represented in Figure 1.

7. The lazy stack

A lazy stack is one in which the full elements, i.e., the elements
of the stack that contain a piece of data, are not necessarily
contiguous. For instance, after a “pop” operation removes a
data portion from the top element of the stack, the hole created
in the top element is not filled even if some other element of
the stack contains a data portion. Obviously, we must record



whether a stack element is full or empty. In the implementation
given in [3], a Boolean variable is used for this purpose. Here we
shall use a different coding: a stack element is described as two
programs—one for the empty case, one for the full case—which
call each other in a mutually recursive way.

We restrict ourselves to Boolean data portions. A data
portion is added to a stack element by a command on the input
channel “in”. A data portion is removed from a stack element
by a command on the output channel “out”. We assume that
the environment never attempts to add portions to a full stack
nor to remove portions from an empty stack. Hence a request
to remove a portion from an empty stack causes the element to
obtain the next data portion from the “rest of the stack”. Such
an action uses the input channel “get”. Similarly, a request to
add a portion to a full element causes the element to push the
portion it contains to the “rest of the stack”. Such an action
uses the output channel “put”. :

The program for the empty stack element is called E. The
program for the full stack element is called F. We have

E={in—in?zx; F F = [in — putlz;in?z; F

[out — get?z; outls; E [out — outlz; E (6)
I8 J

The initialization of an empty stack element is a call of E.
The initialization of a full stack element is a call of F.

8. Implementation of the control part

Let us first implement the “control part” of the program, i.e.,
the programs E and F from which message communication
has been removed. We assume that the stack is empty initially.

Instead of using mutual recursion, we use (what may look like) a

slightly less symmetrical coding of (6): we introduce the channel
(t,t’) and call F from within £ by the usual construction of
process decomposition. We get

E= #[[in > in;t F= «[[t' Atn — put;in
Jout — get; out [f7 Aout — out;t’  (7)

Il II-

In the handshaking expansion, the choice of active and
passive communications is entirely dictated by the occurrence
of the probes. We get

E=
*[[ti Afni — dnoT;[nini];ino [;to1; [ti];te |
|=ti A outi — getot; [gets]; getol; [geti]; outol; [~outi]; outo]
1l
F=
*{[ts’ A ini — puto 1; [puti]; puto |; [-puti];ino T; [—ins];ino |
|ti" A outi — outo T; [-outi]; outo |;td 1; [-ti']; to’ |

I

9. Compilation of E

The first guarded command of F is a standard passive-active
buffer element implemented as an active-active buffer composed
with a passive-passive adaptor (Fig. 2.a). The second guarded

Figure 3: Implementation of E

command is a standard stack element implemented as an active-
active buffer with input outs inverted (Fig. 2.b). The active-
active buffer is a standard cell called a D-element.

Next, we have to enforce mutual exclusion between the
two guarded commands of E. Since ¢n and out are mutually
exclusive, it suffices to guarantee that when sn is completed
in the first guarded command, the second guarded command
cannot start until ¢ is completed. In order to strengthen the
guard of the second command with the appropriate expression,
we introduce in the handshaking expansion of the first guarded
command the variable z. We get

zAini —inot; z|; [~ino]; snol; tot; [ti]; tol; [-t]; 21

as the handshaking expansion of the first guarded command.
Obviously, it suffices to strengthen the guard of the second
guarded command with z to guarantee mutual exclusion be-
tween the two g.c.’s. We get

outi Az — geto 1; [geti]; geto |; [—geti]; outoT; [-outi]; outo)

Since we can weaken —outf as —outs V -z, the only transfor-
mation is the replacement of outs by z A outi. This gives the
circuit of Figure 3 as an implementation of E.

10. Compilation of F

The compilation of the first guarded command of F is identi-
cal to that of the second command of ¥, with the appropriate
change of variables. The compilation of the second command,
however, can be drastically simplified by reshuffling. Since
channel (t,t') is an internal channel, we can reshuffie the hand-
shaking sequence of t' without deadlock. The handshaking ex-
pansion of the second guarded command becomes:

t' Aouti — outo?; to' 1; [-ti' A ~outi]; outo]; to' |

This sequence compiles immediately into the C-element:
(', outs) C (outo, td').



geto

geti

Figure 4: The control part of stack element

s2
in' get’

\»out' pu_t‘—l

, —
<

put

out e

Figure 5: Adding the data path

The channels ¢n and out are used both in F and F, so
we need to merge the local copies of in and the local copies of
out in the standard way. The resulting circuit for the control
part of the stack element is shown in Figure 4.

11. Implementation of the data path
Let S1 and S2 denote program (6) and program (7), respec-
tively. We now have to extend the implementation of S2 so
as to obtain an implementation of S1. We want to leave S2
unchanged and introduce an extra “data path” process P such
that the parallel composition of S2 and P implements S1.
More precisely, the channels §n,out, get, put of S2 are renamed
in’, out', get', put'. P communicates with S2 via the re-
named channels and with the environment via in, out, get, put.
(See Figure 5).
By comparing S1 and S2, we derive that P has to imple-

ment the operations:

in' ein?z

out'e outlz

get' e get?z

put'e putlz

where A e B denotes the simultaneous execution of A and B.
(We can define the completion of an action so that the simul-
taneous execution of two actions is well-defined. The imple-
mentation of A « B amounts to interleaving the handshaking
sequences of A and B.)

The implementation of the four actions of P is based on
the register program constructed in Section 6. For the sake of

ini'  ino’ outo’  puto’ geti’

outo2 => puto2

outo1 ‘\J_" }—9 putot
) =
ini2 \/ - had
i ac ! tot L getit
ini1 St

ino €————

geti2

Figure 6: The data path

brevity, we omit the rest of the derivation which can be found
in [8]. The entire data path is described in Figure 6.
The dual-port flip-flop used in the data path is defined as:

(s1,82;t1,82) 2 z=s1Vs2 >z |
tivi2e z |

(By definition, at most one input is true at any time.)

12. The complete circuit
Two important optimizations are added to the design. The first
one concerns the implementation of the second guard of E:

out — get?z; outlz.

We observe that, in this case, unlike all other guarded com-
mands of (6), the value of z involved in the second action
(out!x) is the same as the value of z involved in the first ac-
tion (get?x). We can therefore encode the value of z in the
handshaking expansion of the guarded command without hav-
ing to use the register. The reshuffled handshaking expansion
including the double-rail encoding of z gives:

—iti A outs — geto1; [getil — outol T |geti2 — outo2 1];
[-outs]; geto|; [-getil — outol | |—geti2 — outo2 |

The circuit is
(—ti, outd) A geto

getil w outol
geti2 w outo2

The second optimization concerns the implementation of
in' @ n?z, which is more complex than that of get' e get?z be-
cause $n is passive while get is active. We replace in?z and
putlz by ins;in7z and outs; out!z, respectively, with 1ns pas-
sive and in active, and outs active and oul passive. For the
output action out, the implementation is the same whether the
channel is active or passive. The complete circuit is shown in
Figure 7 with the data path extended to four bits.

13. Concluding remarks
By combining control and data, the design of a lazy stack en-
compasses most self-timed design issues (except for arbitration
which is treated in 4] and [5]).

Let us summarize the main advantages of the method.
First, the source language, in particular the use of the probe,




produces compact and efficient algorithms, which can be further
“tuned” through process decomposition. Second, the handshak-
ing expansion combined with reshuffling offers powerful alge-
braic manipulations. Third, the production rule notation pro-
vides a canonical representation of the circuit which is straight-
forward to translate in whatever set of VLSI gates is available
or convenient to use. Finally, the notion of stability of a guard
captures exactly the necessary and sufficient condition to avoid
races and hazards.

We already have a compiler that produces about the same
design fully automatically (1]. Figure 8 shows a typical layout
produced by the assembler from the operator set. Each operator
has a standard cell representation. The cells of a process are
stacked to form a tower in which power, reset, and ground run
vertically.
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